

Preface

All integrity test procedures outlined below should be followed when performing integrity testing of membrane filters only. Use of these procedures on other types of filters such as polypropylene or glass fiber cartridges will not give consistent or accurate results. Before starting the procedure ensure your system is set up properly. If you need guidance we have instructions here.

Introduction

Bubble point tests are one means of integrity testing. It works by degerming the pressure required to force liquid held by capillary force in a wetted membrane. The pressure at which bulk flow begins is correlated to the larges pore in the filter, which in turn is correlated to filter retention properties. This test detects minor defects and out-of-size pores, correlating with the amount of bacteria passage through your filter. Pressure is gradually increased on the membrane until a steady stream of bubbles emerges from the largest pore in the membrane. Follow these instructions to properly complete a bubble point test on your membrane filters.

IMPORTANT NOTE: Cartridges where the membrane water bubble point is expected to exceed 50 psi must NOT be bubble point tested using water, as this will exceed the pressure differential limit for the device. Bubble point determination for these cartridges will need to be performed using a lower surface tension fluid, such as 60/40 or 70/30 IPA water.

Bubble Point Test

This test can be conducted manually, with a visual end point to detect a steady stream of gas flowing through

the filter (Figure 1). It can also be conducted using an automated bubble point detector (Figure 2).

Instructions for manual test refer to Figure 1:

- 1. Install and rinse cartridge as per Cartridge Wetting instructions.
- If appropriate, remove the filter cartridge from the housing used for wetting the cartridge, drain all excess wetting solution from the cartridge, and install it into the housing used for integrity testing.
- 3. Starting with all valves in the closed position, open the downstream valve V3.
- 4. Open V0 and set the pressure to approximately 2 3 psi.
- 5. Open the drain valve V4 to purge any upstream fluid.
- 6. Close the drain valve V4 and open outlet valve V3.
- 7. Make sure the outlet of the hose attached to V3 is below the liquid level in the container as shown.
- 8. Increase the air pressure in increments of 2 psig, holding for 5 seconds at each step until a steady stream of air is noted coming from the end of the hose. Note that during pressure increase there may be intermittent bubbles released from the hose. Care must be taken to ensure that there is a steady stream of bubbles, indicating the bubble point has been reached.
- 9. A bubble point value lower than that specified indicates that the system is not integral.

Bubble Point determination can also be done using a mass flow meter or automated bubble point detector (Figure 2). This works by monitoring air flow vs pressure as the pressure is increased. Below the bubble point diffusive flow is measured, which will show a linear increase with pressure. Once the bubble

point is reached there is a significant increase in flow and the curve is no longer linear.

Note: using a mass flow meter requires manual increases in the pressure and monitoring the air flow; an automated system will perform the test without operator intervention.

Procedure Notes

If the cartridge appears to fail the initial bubble point test, repeat the Cartridge Wetting procedure and increase the rinse time to twice the initial amount to assure that the media has been properly wetted. Then retest. If necessary, check the cartridge seal in the housing.

Any Questions?

For help determining the test values or additional information, contact

customerservice@criticalprocess.com or call us at (603) 880-4420.

Critical Process Filtration, Inc. is an ISO-9001 certified manufacturer of process filters. We have been helping customers for over 25 years to build and improve process filtration systems. Our comprehensive testing, analysis, and validation services support your team whenever needed. Partnering with you and your process team is how we deliver your company's solution right the first time.

Last Updated: November 13, 2025

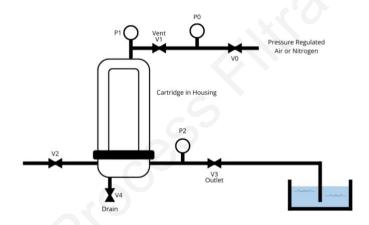


Figure 1: Cartridge Bubble Point Test

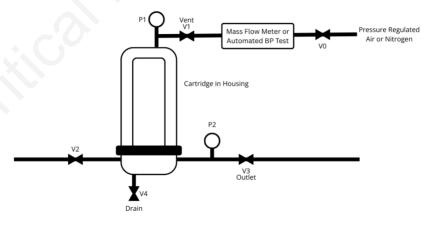


Figure 2: Cartridge Bubble Point Test with Automated Test

One Chestnut Street Nashua, NH 03060 603.880.4420

FAX: 603.880.4536

CriticalProcess.com

© 2025 Critical Process Filtration, Inc. • All Rights Reserved

The information contained herein is subject to change without notice. The Critical Process Filtration logo is a trademark of Critical Process Filtration, Inc. Viton is a trademark of DuPont Performance Elastomers L.L.C.